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1 INTRODUCTION
Preemptive scheduling policies, which allow pausing jobs mid-service, are widely used to let

important jobs bypass less important ones that would otherwise delay their completion. A canonical

example is Shortest Remaining Processing Time (SRPT), which always serves the job with the

least remaining work [18]. Many works analyze response time (the time from a job’s arrival to

completion) in M/G/1 queues under such policies [14, 19, 20], shedding light on questions such

as how preemption affects the mean and tail of response time, and whether preemption is unfair

towards low-priority jobs.

In practice, preempting jobs incurs a delay called preemption overhead (e.g., due to context

switches or cache reloads). Yet, with few exceptions (Section 2), queueing analyses typically ignore

these costs, leaving it unclear how overhead affects preemption tradeoffs.

1.1 Contributions and techniques
We give the first transform-based response time analysis of the M/G/1 queue under preemptive

priority scheduling with stochastic preemption overhead. Our model allows overhead to occur

upon pause, resume, or both, with arbitrary distributions. For each priority class, we derive a

recursive formula for the Laplace-Stieltjes transform of response time, from which all moments

can be computed in closed form.

Our main analytical tool is the job joint transform, a multivariable transform capturing the joint

distribution of a job’s service time and the arrivals that occur during it. One of our key insights

is that under preemptive priority scheduling, preemption overhead can be viewed as a type of

arrival-service dependency. That is, when a high-priority job 𝐽1 interrupts a lower-priority job 𝐽2,

the resulting overhead effectively extends 𝐽2’s service time.

One major obstacle is analyzing busy periods in systems with arrival-service dependency, which

we overcome via the job joint transform. Recall that a busy period started by a set of jobs is the

total service time of the initial set of “level 0” jobs, “level 1” arrivals that occur during service of

level 0 jobs, “level 2” arrivals during level 1 jobs, etc. Busy period transforms play a critical role in

many prior M/G/1 response time transform analyses as well as in the study of stability conditions.

However, arrival-service dependency complicates busy period analysis. The job joint transform is a

multivariable transform that packages this complex dependency into a single transform for each

job. We then derive the busy period transforms as well as the specific job joint transforms for our

preemption overhead model.

In this paper, we:

• Introduce the job joint transform for systems with arrival-service dependency (Section 3).

• Derive stability conditions and analyze busy periods for systems with arrival-service de-

pendency (Sections 3.2 and 3.3).

• Express a flexible model of preemptive priority with preemption overhead as a system with

arrival-service dependence, deriving the job joint transform for our model (Section 4).

• Derive our response time results for a system with preemption overhead (Section 5).

We view our work as a first step towards incorporating preemption overhead into SOAP [20]

and other M/G/1 scheduling theory.
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2 PRIORWORK
Most literature on overheads in queues considers switching between classes of jobs [15, 21] or
between queues in polling systems [4–6]. These models do not capture preemption overhead, as

the policies studied do not switch classes or queues during a job’s service. The only exception we

are aware of is Cao and Xie [6], who study a preempt-restart model in which preempted jobs lose

all progress, whereas we study a preempt-resume model.

Overhead from preempting individual jobs has not been widely studied. Goerg [13] analyzes

SRPT with deterministic pause-only overhead, deriving only mean response time. Peng [16] studies

mean response time under preemptive priority with a more flexible overhead model, which we

adopt (Section 4). Our work extends theirs by analyzing the full response time distribution.

Preemption overhead in preemptive-priority systems introduces a dependency between a job’s

service length and the number of interruptions it experiences from higher-priority arrivals. Several

prior works study queueing systems where the arrival process and service time are interdependent.

These include:

• Preempt-repeat systems, where arrivals interrupt and restart service [1–3, 7, 8, 10, 12, 17].

• Multiclass systems where arrival rates vary based on the class of the job in service [9].

These systems differ in the form of arrival-service dependency: in preempt-repeat models, arrivals

increase service time directly; in Ernst et al. [9], the job in service alters the arrival process. Most

analyses rely on multitype Galton-Watson branching processes, though techniques vary.

Our work introduces a unifying technique: the job joint transform, which captures the joint

distribution of a job’s service time and the arrivals during that time. This tool handles all the above

forms of arrival-service dependency and directly yields our stability condition (Theorem 3.1) and

busy period results (Theorem 3.2). We have derived job joint transforms for these and other systems;

though omitted here for space, they can be used directly with our stability and busy period results.

3 THE JOB JOINT TRANSFORM AND STABILITY CONDITIONS
In many M/G/1 systems, each job has some service time 𝑅, and some number of arrivals 𝐴 occur

during that service. In classical models, these quantities are independent: the arrival process

proceeds at a fixed rate 𝜆, and conditional on 𝑅, we have 𝐴 ∼ Poisson(𝜆𝑅). That is, the arrival
process is independent of the job in service, and the service time does not depend on the number

or type of arrivals.

In more complex systems, this assumption may break. For example, the arrival rate may vary

depending on the job in service, or a job’s service time may increase when certain arrivals occur

(e.g., due to interruptions or overhead). We refer to this general phenomenon as arrival-service
dependency, where the distribution of 𝐴 depends on 𝑅 and vice versa. Such systems often involve

multiple classes of jobs, where the impact of an arrival may depend on both the class of the arriving

job and the class of the job in service. In these cases, we write 𝑅𝑘 for the service time of a class 𝑘

job, and define ®𝐴𝑘 = (𝐴𝑘,1, . . . , 𝐴𝑘,𝑛), where 𝐴𝑘,𝑖 counts the number of class 𝑖 arrivals that occur

during service of a class 𝑘 job. The joint distribution (𝑅𝑘 , ®𝐴𝑘 ) may vary arbitrarily across classes

and need not admit any independence structure.

Nonetheless, one can still show that for each class 𝑘 , the joint distribution (𝑅𝑘 , ®𝐴𝑘 ) is drawn
i.i.d. across jobs. This follows from the homogeneity of Poisson arrivals, even in the presence of

arrival-service dependency. We omit the proof for space.

We therefore define the job joint transform, which captures the joint distribution of (𝑅𝑘 , ®𝐴𝑘 ) for
each class 𝑘 .

J𝑘 (𝜃, ®𝑧) = 𝔼
[
𝑒−𝜃𝑅𝑘

𝑛∏
𝑖=1

𝑧
𝐴𝑘,𝑖

𝑖

]
.
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3.1 Notation
We use the following subscript conventions throughout. A subscript like < ℓ denotes a sum over

classes < ℓ for arrival rates and loads (e.g., 𝜆<ℓ =
∑

𝑖<ℓ 𝜆𝑖 ); a class-restricted busy period 𝐵<ℓ includes

only jobs of class < ℓ at all recursive levels; and for everything else, < ℓ denotes a mixture over

classes < ℓ weighted by arrival rate; e.g., 𝑧<𝑘 =
∑

𝑖<𝑘
𝜆𝑖
𝜆<ℓ

𝑧𝑖 . Subscripts ≤ ℓ and > ℓ are defined

analogously. When no subscript is present, the quantity refers to all classes, and can be interpreted

as using ≤ 𝑛. We write 𝑉 for the Laplace–Stieltjes transform (LST) of a distribution 𝑉 , and E𝑉 for

its excess distribution [14], whose LST is Ẽ𝑉 (𝜃 ) = 1−𝑉 (𝜃 )
𝜃𝔼[𝑉 ] .

3.2 Stability Conditions
Stability conditions can be directly extracted from the job joint transforms J𝑘 (𝜃, ®𝑧). Let ®𝐴𝑘 =

(𝐴𝑘,1, . . . , 𝐴𝑘,𝑛) denote the vector of class-wise arrivals during a class 𝑘 job. Then byWald’s equation

and multitype Galton-Watson branching process theory, we obtain the following:

Theorem 3.1. The M/G/1 is stable if

𝜌 :=

𝑛∑︁
𝑘=1

𝜆𝑘

𝜆

𝑛∑︁
𝑖=1

𝔼[𝐴𝑘,𝑖 ] < 1,

i.e., the expected total number of arrivals during a single job’s service is less than 1.

In this situation, 𝜌 is also the load (a.k.a. utilization) of the system, and can be expressed in

several equivalent ways:

𝜌 =

𝑛∑︁
𝑘=1

𝜆𝑘𝔼[𝑅𝑘 ] =
𝑛∑︁

𝑘=1

𝔼[𝐴𝑘,𝑘 ] and 𝜌 = −
𝑛∑︁

𝑘=1

𝜆𝑘 𝜕𝜃J𝑘 (0, ®1) =
𝑛∑︁
𝑖=1

𝜕𝑧𝑘J𝑘 (0, ®1).

The first identity follows from a standard renewal-reward argument [14]; the second expresses

these quantities in terms of derivatives of the job joint transforms.

3.3 Busy Period Analysis
A key structural object in our analysis is the busy period: the total amount of work generated,

directly or indirectly, by a single job or initial period of work. The busy period started by a job

includes the service time of that “level 0” job, as well as all recursively generated “level ℎ” jobs for

ℎ ≥ 1, where level ℎ jobs are those that arrive during service of level ℎ−1 jobs. We denote by 𝐵(J𝑘 )
the transform of the busy period started by a class 𝑘 job with joint transform J𝑘 , and by 𝐵(𝑉 ) the
transform of a busy period started by an arrival-independent amount of work 𝑉 .

In multiclass systems, it is often useful to restrict attention to jobs of certain classes. We define

the class < ℓ busy period as the total service time recursively generated by jobs of class < ℓ . That is,

only class < ℓ jobs are included at all levels of the recursion beyond the initial level 0 job. We denote

the transform of the class < ℓ busy period started by a class 𝑘 job as 𝐵<ℓ (J𝑘 ), and use 𝐵<ℓ (𝑉 )
when the initial work is not associated with a specific job. Both of these busy period constructs are

central to many response time analyses under preemptive policies [13, 14, 16, 18–20], including

our own results in Section 5.

Theorem 3.2.

𝐵<𝑙 (J𝑘 ) (𝜃 ) = J𝑘

(
𝜃,

[
𝟙(𝑖 < 𝑙) 𝐵<𝑙 (J𝑖 ) (𝜃 ) + 𝟙(𝑖 ≥ 𝑙)

]𝑛
𝑖=1

)
,

𝐵<𝑙 (𝑉 ) (𝜃 ) = 𝑉
(
𝜃 + 𝜆<𝑙 (1 − 𝐵<𝑙 (J<𝑙 ) (𝜃 ))

)
.
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4 PREEMPTION OVERHEAD MODEL AND JOB JOINT TRANSFORM
Having obtained the transform for arrival-sensitive busy periods, we will apply it to a system with

preemption overhead. We first describe our model and introduce some notation.

We are considering a system with a single server, Poisson arrivals, and static priority, meaning

each arriving job has a class 𝑘 ∈ {1, . . . , 𝑛} that remains unchanged during its time in the system.

The scheduling policy is preemptive priority, meaning that at each point in time, the job with lowest

class is being served. If a job of class 𝑖 arrives during service of a class 𝑘 job, and 𝑖 < 𝑘 , the class 𝑘

job will be preempted to serve the class 𝑖 job, incurring pause overhead when it is preempted and

resume overhead when it resumes service.

We will need notation for the following values for response time analysis. For each class 𝑘 , 𝜆𝑘
is the arrival rate; 𝑆𝑘 , 𝐶𝑘 , and 𝐷𝑘 denote the base service time (job size), pause overhead, and

resume overhead distributions, respectively; and 𝑅𝑘 is the full service time including overhead.

The quantities 𝛾𝑘 and 𝛿𝑘 denote the loads of pause and resume overheads, respectively. We write

𝜎𝑘 = 𝜆𝑘𝔼[𝑆𝑘 ] for the job-size load (service excluding overhead), and 𝜌𝑘 = 𝜎𝑘 + 𝛾𝑘 + 𝛿𝑘 for the total

service load including overhead. Finally, as in Section 3.1, we write 𝐵<𝑘 (𝐶𝑖 ) and 𝐵<𝑘 (𝐷𝑖 ) for busy
periods started by pause or resume overheads.

As a first step to analyzing preemption overhead, we compute the job joint transform induced

by our overhead model.

Theorem 4.1. The job joint transform for a class 𝑘 job under our preemption overhead model is

J𝑘 (𝜃, ®𝑧) = 𝑆𝑘
(
𝜃 + 𝜆≥𝑘 (1 − 𝑧≥𝑘 ) + 𝜆<𝑘

(
1 − 𝑧<𝑘 O𝑘 (𝜃, ®𝑧)

) )
, where

O𝑘 (𝜃, ®𝑧) =
𝐶𝑘 (𝜃 + 𝜆(1 − 𝑧)) 𝐷𝑘 (𝜃 + 𝜆≥𝑘 (1 − 𝑧≥𝑘 ) + 𝜆<𝑘 )

1 −𝐶𝑘 (𝜃 + 𝜆(1 − 𝑧))
(
𝐷𝑘 (𝜃 + 𝜆(1 − 𝑧)) − 𝐷𝑘 (𝜃 + 𝜆≥𝑘 (1 − 𝑧≥𝑘 ) + 𝜆<𝑘 )

) .
From Theorem 4.1, we can compute 𝛾𝑘 and 𝛿𝑘 , obtaining

𝛾𝑘 =
𝜆<𝑘𝜎𝑘

𝐷𝑘 (𝜆<𝑘 )
𝔼[𝐶𝑘 ] 𝛿𝑘 =

𝜆<𝑘𝜎𝑘

𝐷𝑘 (𝜆<𝑘 )
𝔼[𝐷𝑘 ] .

5 RESPONSE TIME ANALYSIS
We use the job joint transform J to analyze response time under preemptive priority with preemp-

tion overhead. Given the busy period transforms from Theorem 3.2, we apply a tagged-job style

analysis [14, 18, 20].

A class 𝑘 job must wait behind all class < 𝑘 jobs present at arrival and any that arrive while it

waits. It cannot depart until the full class < 𝑘 busy period it initiates completes. Thus, its response

time corresponds to that of an M/G/1 queue with arrival rate 𝜆𝑘 and job size distribution 𝐵<𝑘 (J𝑘 ),
where these job sizes represent class 𝑘 jobs’ residence times: the time from start of service to

completion [14].

Additional delays occur if the job arrives during a class > 𝑘 resume, a class > 𝑘 pause, a class > 𝑘

service it interrupts, or a class < 𝑘 service not yet included in a class 𝑘 residence time. We model

these as generalized vacations in the sense of Fuhrmann and Cooper [11], reducing the problem

to computing 𝑋𝑘 : the response time of class 𝑘 jobs that do not arrive during another class 𝑘 job’s

residence time. The main challenge lies in computing 𝑋𝑘 (𝜃 ).

Theorem 5.1. The transform of the response time of a class 𝑘 job under preemption overhead is

(1 − 𝜌<𝑘 − 𝜌𝑘 ) �𝐵<𝑘 (J𝑘 ) (𝜃 )
1 − 𝜌<𝑘 − 𝜌𝑘 �E𝐵<𝑘 (J𝑘 ) (𝜃 )

𝑋𝑘 (𝜃 ),
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where

𝑋𝑘 (𝜃 ) =
𝑛∑︁

𝑗=𝑘+1

𝜆 𝑗

𝜆>𝑘

𝛿>𝑘

1 − 𝜌≤𝑘
�E𝐵<𝑘 (𝐷 𝑗 ) (𝜃 ) �𝐵<𝑘 (𝐶 𝑗 ) (𝜃 ) +

(1 − 𝜌<𝑘 )𝜎>𝑘
1 − 𝜌≤𝑘

�𝐵<𝑘 (𝐶>𝑘 ) (𝜃 )

+
𝑛∑︁

𝑗=𝑘+1

𝑗−1∑︁
𝑖=1

𝜆𝑖

𝜆< 𝑗

𝛾 𝑗

1 − 𝜌≤𝑘
�E𝐵<𝑘 (𝐶 𝑗 ) (𝜃 ) 𝐵<𝑘 (J𝑖 ) (𝜃 )𝟙(𝑖<𝑘 ) +

(1 − 𝜌 + 𝜎>𝑘 )𝜌<𝑘
1 − 𝜌≤𝑘

�E𝐵<𝑘 (J<𝑘 ) (𝜃 ).
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